If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2-10y=9=0
We move all terms to the left:
3y^2-10y-(9)=0
a = 3; b = -10; c = -9;
Δ = b2-4ac
Δ = -102-4·3·(-9)
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-4\sqrt{13}}{2*3}=\frac{10-4\sqrt{13}}{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+4\sqrt{13}}{2*3}=\frac{10+4\sqrt{13}}{6} $
| 12x+5=-6x+17 | | -14=j/9+-11 | | k/8+79=71 | | 10(y+1)=100 | | 25-4t=17 | | 1=n/5-5 | | 1=n/5-1 | | 9x-4=-5x+7 | | 2=x-72/7 | | 2=x/72/7 | | 5a+3/7+2a/3= | | 1+1/2x=6 | | 3+4x=5+-6x | | 32=j-2 | | 0.04(54)+0.16x=0.08(x+54) | | x/258=0,78 | | 180=90+2x+3x-10 | | 7x4=8x-2x | | -(3/6)x=-(1/10) | | 2a+4/3=10 | | 0.2x+3=-0.4x-6 | | 3a-8/2=10 | | 2a/3-4=6 | | 3a/12-18=-16 | | 2a/10+6=8 | | 4a/2+8=20 | | 7x-13-3x+13=180 | | 6a/4+3=12 | | 5a/4-3=7 | | 3(4n-2)=5(n+3) | | 3a/2-8=10 | | 2a/3+4=10 |